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A theory to analyse the strength of composite materials with randomly oriented short fibres has 
been developed. The short fibres are assumed to be uniformly distributed and randomly oriented in 
three dimensions. The non-homogeneous deformation within the composite has been taken into 
account in the strength calculation. The influences of thermal stress in the short fibres, the 
short-fibre dispersion hardening and the dislocation density in the matrix on the composite 
strength have all been estimated, and the strengthening mechanisms involved are discussed. 
A comparison with previous strength theory suggests that the present theory gives a better 
agreement with experimental data, and can be used to explain some experimental phenomena that 
remain unsolved. 

1. Introduct ion 
Composites reinforced with randomly oriented short 
fibres have become increasingly popular in recent 
years [1, 2]. The strength of such composites is one of 
the most important properties and it has attracted the 
attention of researchers in the composite area. In the 
design of a randomly oriented short-fibre-reinforced 
composite, it is essential to understand the strengthen- 
ing mechanisms and the relationship between the 
strength of composites and the properties of its com- 
ponents. Although successful theories have been de- 
veloped to predict the strength of composites having 
continuous or discontinuous fibres with unidirectional 
orientation [-3-6], surprisingly only a limited amount 
of theoretical work has been done in understanding 
the strength of the composite with randomly oriented 
short fibres. Among the few models available in the 
literature, the models of both Chen [7] as well as 
Halpin and Kardos [8] treated the composite as 
a stack of unidirectional short-fibre-reinforced lam- 
inae bonded together at different angles, which is 
hardly true in reality. Also, these two theories do not 
provide any clear relationship between the composite 
strength and the component properties because they 
rely on the experimental failure strength and strain 
data of the unidirectional laminae. 

Fukuda et aL [9] developed a theory to predict the 
strength of a composite reinforced with randomly 
oriented short fibres. Their theory considers neither 
the deformation inhomogeneity between the fibres 
and matrix of short fibre composites, nor the effect of 
matrix properties on the composite strength. As a re- 
sult, the composite strength predicted by their theory 
is far below the experimental strength. 

Friend [1, 10] proposed an empirical strength 
equation for randomly oriented short-fibre-reinforced 
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metal matrix composites. Although his equation 
seems to agree with experimental data of some alumi- 
nium alloy matrix composites, it cannot explain the 
high strength of the composite with a pure alumi- 
nium matrix. This is because Friend's theory lacks 
identification of the dominant matrix strengthening 
mechanism. 

The objective of the present work was (1) to develop 
a new strength theory for three-dimensional randomly 
oriented short-fibre-reinforced composite materials, 
which will avoid the shortcomings of previous the- 
ories; and (2) to compare and evaluate all the existing 
strengthening mechanisms of the metal matrix com- 
posites reinforced with short fibres. 

2. Strength analysis 
The random short-fibre-reinforced composites are dif- 
ferent from the continuous and particulate composites 
in that both the matrix and fibres of short-fibre com- 
posites carry load. Compared to that of continuous 
fibre composites, the matrix of random short-fibre- 
reinforced metal matrix composite is subjected to 
work hardening and larger strain than the fibre. In 
addition to directly bearing the load, the short fibres 
will also have dispersion strengthening effect on the 
matrix in a similar way as does the particulate. 

Owing to thermal expansion mismatch between the 
fibre and the matrix, compressive thermal stress will 
develop in the fibre and a high dislocation density will 
result in the metal matrix as the composite is cooled 
from the high synthesis temperature [11, 12]. The 
compressive thermal stress in the fibres and high dis- 
location density in the matrix will contribute towards 
the composite strength. 

During the tensile loading, off-axis fibres will tend 
to align with the loading direction due to the sample 
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elongation along the loading direction and the area 
reduction perpendicular to the loading direction. This 
alignment process will have a negligible effect on the 
composite strength [13] and therefore will not be 
discussed here. All other strengthening mechanisms 
mentioned above will be analysed. 

2.1. Direct shor t - f ibre  s t r e n g t h e n i n g  
The basic steps for deriving the direct strengthening 
by the randomly oriented short fibres are as follows. 
First, the load carried by an off-axis fibre at composite 
failure will be derived as a function of the off-axis 
angle, 0, which is the angle between the tensile loading 
direction and the longitudinal direction of the fibre. 
The second step is to obtain the average load contri- 
bution per fibre towards the loading direction. The 
third step is to calculate the effective number of fibres 
that is intercepted by a plane perpendicular to the 
loading direction. The total load carried by fibres at 
composite failure can then be calculated. 

For simplicity, the following assumptions are made: 
(1) all fibres in the composite have the same tensile 
strength. This may not be true in reality, but it is 
a reasonable assumption and has been widely ac- 
cepted in many other theories; (2) all the fibres have 
the same length and are randomly oriented, and (3) 
strong bonding between the fibres and the matrix. 

To obtain the load carried by an off-axis fibre as 
a function of the off-axis angle, 0, the strain in the fibre 
has to be calculated first. Fig. 1 shows a fibre with 
a off-axis angle 0 < 0 < 7z/2 in a composite sample. 
With x3 as the loading direction, the composite failure 
strain in the x3 direction is 

g33 : 8c (1) 
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Figure 1 Definition of the off-axis angle, 0. 
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where 8~ is the composite failure strain under tensile 
load. The strain in the Xl and x2 directions are 

811 = S22 = - -  V833 (2) 

where v is the Poisson's ratio of the composite. 
To calculate the strain in the off-axis fibre, let us 

rotate the coordinate system around the xl axis clock- 
wise for an angle of 0 (see Fig. 1). The transformation 
matrix is 

[axx 12a131, [i0 0 1 
A =  a21 022 a 2 3 [ =  c o s 0  - - s i n 0  (3) 

a31 a32 a33J sin0 cos0 J 

where a 0 = cos%, and a0 is the angle between y~ and 
xj. The strain in Y3 direction (along the off-axis fibre) 
can be calculated as 

3 3 

E~3(0) = E a3i E a3jsiJ 
i=1 j=l 

= 833(COS 2 0 - -  v s i n  2 0) (4) 

Substituting Equation 1 into Equation 4 yields 

8~3(0) = so(cos 2 0 - vsin 2 0) (5) 

In the short-fibre composite, the matrix is also a load- 
bearing component. It will undergo higher deforma- 
tion because it has a lower Young's modulus than the 
fibre. As a result, the actual composite failure strain, 
go, is usually larger than the fibre failure strain, 8f, 
due to the inhomogeneous deformation. Setting 
g~3(0) = 8f in Equation 5 and solving the equation 
yields 

_~(k + v'] :/2 
Oo = cos \ ~ - ~ ]  (6) 

where er is the fibre failure strain and 

k = 8f/at (7) 

At 0 < 0o, 8~3(0) calculated with Equation 5 will be 
larger than 8f. Let us assume that all the fibres with 
off-axis angle less than 00 fail simultaneously and their 
failure causes immediate composite failure. Then, at 
composite failure, the load carried by those fibres with 
0 < 0o will be 

f(0) = a f ~  r = fo (8) 

where af is the fibre cross-sectional area, of is the fibre 
strength andfo is the maximum load a fibre can carry. 

The strain in the fibres with 0 > 0o can be con- 
sidered approximately equal to 8~3(0). The load car- 
ried by those fibres, therefore, can be calculated as 

f(O) = Efaf 8~3(0 ) (9) 

where Ef is the Young's modulus of the fibre. Con- 
sidering tyf = EeSf and substituting Equations 5, 7 and 
8 into Equation 9, we get 

f(0) = ~ (COS 2 0 - -  vsin 2 0) (10) 

Setting f(0) = 0 in Equation 10 yields 

sinE0f -- 1/(1 + v) (11) 



where Of can be calculated from Equation 11. From 
Equation 10, it can be seen that f(0) is positive if 
0 < Of, which means tensile load in the fibre. But, if 0 
is larger than 0f,f(0)  will be negative, which means 
compressive stress in the fibre. Because the fibre has 
higher Young's modulus than the matrix, the fibre 
should always have a higher resistance to deformation 
than the matrix does, regardless of its stress condition. 
Therefore, those fibres under compressive stress will 
also make a positive contribution toward the com- 
posite strength. Based on the above argument, the 
absolute value of f(0) should be used for the calcu- 
lation of average load contribution per fibre towards 
the loading direction. 

With the above discussion, the load carried by fibres 
with different off-axis angles can be summarized as 

So 0.<00 

f(0) = (cos2 0 - v sin 2 0) Oo ~" 0 ~<~ Of (12) 

- (cos 2 0 - v s i n  20) 0 f <  0~< 

To derive the average load contribution per fibre 
towards the loading direction, the fibre orientation 
distribution at composite failure as a function of off- 
axis angle, 0, is also needed. It is assumed that the 
fibres are completely randomly oriented before load- 
ing. Then, the fibre distribution can be expressed 
as [9] 

N(0') = Nsin0'  (13) 

where N is the total number of fibres in the specimen. 
The average load contribution per fibre towards the 
loading direction,~, can be calculated as 

1 I r~/2 
= N.lo N(O)lf(O)lcos(O)dO (14) 

Substituting Equations 12 and 13 into Equation 14 
and integrating Equation 14, we get 

afof 1 + v 2 
= (15) 

4 l + v  

I 
P 

Figure 2 A composite sample and its cross-section. 

Assume that A is the sample cross-sectional area 
perpendicular to the loading direction (see Fig. 2) and 
Ne is the effective number of fibres that is intercepted 
by the cross-section. Owing to the critical load trans- 
fer length of short fibres, not every fibre cut by the 
cross-section is load bearing at the cutting point. 
Ne represents the number of fibres that is load bearing 
at the cutting point. N~ can be expressed as (see Ap- 
pendix) 

N~ = 2af \ ~ (16) 

where Vf is volume fraction of the short fibres, lc is the 
critical load transfer length, and l is the fibre length. 
Therefore, at the cross-section, the total load carried 
by the short fibres at composite failure is 

Pr = N<~ (17) 

and the contribution of short fibres towards the com- 
posite strength is 

of  = Pf/A (18) 

Substituting Equations 15-17 into Equation 18 yields 

f 1 1 + v 2 /  Io'~ 
(3" c = ~ Vf(Yf ~ \ll - ~ )  (19) 

2.2. Dispersion hardening by short fibres 
It can be understood that the dispersion strengthening 
by the random short fibres should be different from 
that by particulate. Therefore, the analysis used to 
calculate the dispersion strengthening for particulate 
composites is not appropriate for random short-fibre 
composites. Because no theory is available for short- 
fibre dispersion strengthening, it is necessary to devel- 
op a model for the calculation of random short-fibre 
dispersion strengthening. 

Assume that a cube with edge length b is cut out of 
a random short-fibre-reinforced composite. The total 
number of short fibres in the cube can be calculated as 

b3 gf 
N , -  lrcd2/4 (20) 

where Vf is the fibre volume fraction, l is the fibre 
length and d is the fibre diameter. 

The large cube can be considered to consist of 
Nc small cubes with edge length c, where Nc is deter- 
mined in such a way that, on average, only one fibre 
passes through or is present in each small cube. This is 
equivalent to each small cube containing effectively 
only one fibre on average, and there are in total 
Nc effective fibres. Each effective fibre in a small cube 
can be treated approximately as a particle located at 
the centre of a small cube. Then, the distance between 
two adjacent particles should be equal to the small 
cube edge length, c. The value ofc can be calculated as 

C =  (b3~ '/3 
\NJ 

b 
= NJ/3 (21) 
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In a short-fibre composite, the length of a short fibre 
may be several times that of the small cube edge. In 
other words, a short fibre may go through several, say 
n, small cubes. Therefore, a short fibre may be con- 
sidered equal to n effective fibres, where n can be cal- 
culated as 

n = I/c (22) 

The total number of effective short fibres is 

S t  = Ntn (23) 

Substituting Equations 20-22 into Equation 23 and 
rearranging, we get 

['4Vfb2"~ 3/2 
Nc = ~ , ~ / /  (24) 

Substituting Equation 24 into Equation 21 yields 

c = 2 \ V f /  (25) 

The segment of fibre in a small cube can be approx- 
imated as a spherical particle with the same volume. 
The volume of a fibre can be calculated as 

V = l~dZc (26) 

and the volume of the particle is 

4 3 V = ~zr  (27) 

where r is the radius of the particle. Substituting 
Equations 25 and 26 into Equation 27 and solving the 
equation for r yields 

d (  9r: "] u6 
r = 2 \ 1 6 V f J  (28) 

The mean free dislocation length in the matrix can be 
calculated as 

[ = c - 2r (29) 

Substituting Equations 25 and 28 into Equation 29 
yields 

1 = ~(~:)h\t.,] - - 6  I/3 ] (30) 

The additional shear stress required to move a dis- 
location due to dispersion strengthening can be cal- 
culated as [11] 

Gb 
Azml = -~- (31) 

where G is the shear modulus and b is the Burgers 
vector. Under unidirectional tension load, the addi- 
tional normal stress needed to provide A~ is [t  t] 

ACYml = 2AZrnl (32) 

The above A~ is actually the dispersion strengthen- 
ing. Substituting Equations 30 and 31 into Equation 
32 yields 

ffr:hl/6Fln'x'~3 ]}-~ 
A(~'ml = 4Gbidt~) LK~) -61'3 

(33) 
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Equation 33 is the final equation for calculating the 
dispersion strengthening in random short-fibre com- 
posites. It can be seen from Equation 33 that the 
dispersion strengthening is inversely proportional to 
the fibre diameter, d. 

2,3, Thermal stress and dislocation 
strengthening 

Metal matrix composites are generally synthesized at 
high temperatures, The difference in the thermal ex- 
pansion coefficients between the fibre and the matrix 
can lead to the development of thermal stress and 
strain during the subsequent cooling of the composite 
from the high synthesis temperature [11]. High dis- 
location density may be introduced at the matrix-fibre 
interface due to the thermal strain, which will 
strengthen the matrix [12]. In addition, residual ther- 
mal compressive stress may also exist in the fibre, 
which will increase the apparent strength of the fibre. 
All of these must be taken into account in calculating 
the composite strength. 

The dislocation strengthening in term of shear stress 
can be calculated as [1 t] 

A~m2 = =Gbp 1/z (34) 

where 0t = 0.3-0.5 is a constant, G is the shear modu- 
lus, b is Burgers vector and p is the dislocation density. 
The corresponding normal stress needed to overcome 
ATr.z during tensile test is [11] 

A~rm2 = 2Azmz 

= 2ctGbp I/2 (35) 

It is very diffficult to calculate quantitatively the 
dislocation density in the matrix and the compressive 
stress in the fibre because of their dependence on the 
thermal processing history of the composite. Never- 
theless, qualitative estimation can be made based on 
experimental data. Arsenault and Fisher [-12] ob- 
served that the dislocation density in the matrix of an 
SiC fibre-reinforced aluminium alloy composite is 
about 1 • 10 t~ to 4 x t0 I~ cm -~ and the residual com- 
pressive stress can be up to 35 MPa. Pure aluminium 
matrix may have a dislocation density much larger 
than the above observed value because of its lower 
yield strength. 

2,4. Compos i t e  s t rength calculat ion 
With the analysis of above strengthening mechanisms, 
the composite strength can be calculated as 

(re = ( 1 - - V 0 0 " +  V f ~  1 + v  l - - ~ l c )  

(36) 

where Vf is the fibre volume fraction, or' is the matrix tll 
strength at composite failure, cr[ is the apparent fibre 
strength, v is the Poisson's ratio, I~ is the critical load 
transfer length and t is the fibre length. Om can be 
calculated as 

(Yna "---- t3"m --l- m(Yml "4" A~m2 (37) 



where crm is the calculated matrix stress at composite 
failure without the consideration of dispersion hard- 
ening and dislocation strengthening. Substitution of 
Equations 33 and 35 into Equation 37 yields 

Om = ' m+aOb'd\V,/ / \VU  - 6  

+ 2r 1/2 (38) 

o~ can be calculated as 

O[ = Of -~" O r (39) 

where of is the fibre strength and Or is the residual 
compressive stress in the fibre. 

3. Discussion 
The strength of randomly oriented short-fibre- 
reinforced metal matrix composite can be estimated 
using Equations 36, 38 and 39. Although quantitative 
calculation may be difficult because the dislocation 
density in the matrix and the residual compressive 
stress in the fibres is usually unknown, this analysis 
does give us some information about the significance 
of each strengthening mechanism. 

Friend [1,10] developed an empirical strength 
equation for randomly oriented short-fibre-reinforced 
metal matrix composites. The equation takes the form 

O c = (Ym(1 - -  Vf) -I- - ~  1 - -  ~ ( 40 )  

Although this equation can predict the strength of 
the 6-alumina fibre-reinforced aluminium alloy com- 
posites very well, it cannot explain the high strength of 
the pure aluminium matrix composite. For example, 
Friend's equation predicts a strength of approxim- 
ately 120 MPa for a commercially pure aluminium 
matrix composite with 25% 5-alumina fibre. The pre- 
dicted strength is 55 MPa less than the experimentally 
measured strength, 175 MPa. Referring to Arsenault 
and Fisher's work [12], we may reasonably assume 
that the matrix dislocation density, p, is 3 x 10 cm -2 
and the residual compressive stress in the fibre is 
35 MPa. Our analysis using Equation 36 predicts 
a strength value of 175 MPa, which agrees with the 
experimental data. Another example is a pure alumi- 
nium matrix composite with 20% &alumina fibre. 
Friend's equation predicts its strength as approxim- 
ately 75 MPa, which is 65 MPa less than the experi- 
mentally measured strength, 140 MPa. Assuming that 
the matrix dislocation density is 2 • 10 cm -2 because 
of the lower fibre volume fraction in this case, our 
analysis predicts its strength value as 140 MPa, which 
again agrees with the experimental data. 

The present analysis can also explain the strength 
of the aluminium alloy matrix composite very well. 
For example, an A1-TSi matrix composite with 20% 
5-alumina fibre has an experimental strength of 
237 MPa Ill.  Assuming that the residual compressive 
stress is 35 MPa and the matrix dislocation density 
is l0 cm -2 (aluminium alloy has a higher yielding 
strength and thus has a lower dislocation density than 
pure aluminium after higher temperature synthesis), 

the present analysis predicts its strength to be 
244 MPa. Of course, all the predictions by the present 
analysis are only qualitative because the dislocation 
density and residual fibre stress used in the calculation 
are not experimentally determined values. Never- 
theless, the present analysis give us some idea about 
the strengthening mechanisms in randomly oriented 
short-fibre-reinforced metal matrix composites. It 
can also provide composite engineers with some ap- 
proaches to improve the composite strength. 

4. Conclusions 
The strength analysis for randomly oriented short- 
fibre-reinforced metal matrix composites developed in 
this paper can explain the experimental strength data 
much better than previous models. Basic material 
parameters such as the Poisson's ratio, short-fibre 
strength and critical load-transfer length were in- 
cluded in the equation for calculating the composite 
strength. Various strengthening mechanisms con- 
sidered in the analysis include the metal matrix disper- 
sion hardening by randomly oriented short fibres, the 
dislocation strengthening and the residual thermal 
stress in the fibres. This analysis may provide com- 
posite engineers with some very useful information for 
the design of composite materials. 

Appendix: the effect ive fibre 
number Ne 
The average projective fibre length on the loading 
direction, i -e, can be calculated in a similar way to f(0) 

1 I ~/2 
~e = N,Jo /~cos(O)Nsin(O)dO 

- ( A 1 )  
2 

where I e is the effective length of the short fibre and 0 is 
as defined before. I e can be expressed as 

I~ = l -  Ir (i2) 

where I and l~ are short-fibre length and critical load- 
transfer length, respectively, 

Assuming that there are in total N randomly ori- 
ented fibres and the composite sample length is L, the 
effective number of fibres cut by a sample cross- 
section perpendicular to the loading direction can be 
calculated as 

U e = NFr (A3) 
L 

N can be calculated from the following equation 

L A  Vf 
N - (A4) 

laf 

where A is the sample cross-sectional area. Substitu- 
ting Equations A1, A2 and A3 into Equation A4 yields 

N~ = 2af 1 l~ 
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